Water Unleaded Launch

Water Unleaded Window Cling Example

Water Unleaded Window Cling ExampleHaving worked for many years in the water industry, I've closely followed the recent events related to the lead controversy in Flint, Michigan. If you're a regular reader of this blog, you've also probably seen the articles my partner and I posted about the topic. As we continued to discuss the topic over the last few months, we realized we could continue to offer through our blog information to people about minimizing their exposure to lead in their homes. But what could we do to help people be sure they are not exposed to lead once they ventured outside their home? So we started to wonder if it might be useful to have a place online where people could check to see the levels of lead in places they were thinking of visiting. Today we are launching that site – Water Unleaded – to serve as a type of drinking water quality registry focusing on the content of lead in drinking water. 

If you own or manage a business and are interested in listing information about lead in the drinking water at your site, we encourage you to head on over and check out the various listing methods. One basic listing can be created for free in the primary categories. If you are interested in posting test results or placing a listing in a lead-level category, a small fee applies. Memberships and paid listings are also available offering additional features. Some premium memberships allow the abilty to purchase a window cling to post at your place of business with verfication of test results.

If you provide testing services or other water related services or products, you can also create a listing. For a small fee, you can place your listing in the category representing the type of service or product you offer.

Because the site is newly launched, we are very interested in your feedback. Please let us know if you find any bugs or have any questions or suggestions. We are trying to provide a useful site to help all of us better understand lead levels in our drinking water and minimize our exposure. Thanks for checking it out!!!


Lead Paint and Elevated Water Tanks

Elevated Water Tank - Source: Morguefile

Elevated Water Tank - Source: MorguefileRecently I read that the USEPA is considering revising the Lead and Copper regulations because of public concern over the drinking water issue in Flint, Michigan, and lead poisoning in general. And it got me wondering if the USEPA is going to develop a more comprehensive approach to addressing lead and copper in our water systems, will they add in regulations to address lead paint on elevated water tanks? I have not really seen any data on how many tanks in our country might still have lead paint, but based on my past experience, I would guess most tanks painted prior to the late 1970s could still have a lead paint coating if the original paint had not been removed by sandblasting to bare metal. I also have not seen any data indicating leaving the lead paint in place is causing any issues, but if we are talking about replacing all the lead pipes in the country even if phosphates are used and lead is no longer leaching into the water, why would we not at least discuss the pros and cons of requiring removal of lead paint from our elevated water tanks?

I know in one city where I worked, one of the tanks for which I prepared specifications for repainting definitely had lead paint which surprised me because it had been painted about 1977-78. The reason it was surprising is that by the late 1970s, people in the industry must have been well aware that lead paint was being phased out. So I could not figure out why the consultant who developed the specifications and managed the construction and painting of that 1 million gallon tank allowed the contractor to use lead paint. But because he did, I was faced with the decision 30 years later to just do minor sandblasting and paint over the remaining paint or to blast to bare metal and repaint. Although it was more costly, I chose the latter because I could not imagine leaving lead paint on the tank and risking a problem in the future. Unfortunately I left the position before the tank painting was put out to bid, so I can't guarantee the city chose in the end to follow that plan since it was more costly.


Flint Water Testing Update & One Quick Easy Fix

Flint Water Analysis as of Feb. 13, 2016

One more week has gone by and there have been an additional 2,133 tests completed for lead and copper in Flint, Michigan. This brings the total number tested to date to almost one third of the 31,000 total users (number of total users from the city of Flint website). I've updated the pie chart showing little change in the percent of sites testing over the action limit for lead levels, now at 7% with a level of 9 ppb being the 90th percentile – well below the action level of 15.

Flint Water Analysis as of Feb. 13, 2016Fortunately I've noticed discussion of the situation in the media and online turning to a more well thought out direction with some realizing lead in the water is probably not the primary cause of the lead problem in Flint. People are also starting to realize Flint is no different than the majority of cities in the U.S., and all this testing is proving Flint is actually better off than many with respect to lead levels in their water.

One article, "Two, Three… Many Flints – America’s Coast-to-Coast Toxic Crisis," does a good job discussing the lead risks posed by paint and how this is not just a problem for Flint, Michigan. The article also points out how focusing too much on Flint to the exclusion of all else and not acknowledging that cities all across America are in the same or worse state will ignore the larger problem. And this will mean that people in other areas will continue to face this issue as they do now with little to no help or education.

And while I like that the article, "Fixing Our Broken Water Systems" also acknowledges the problem is all over, it's concerning that the media is still pushing for full replacement of service lines and other requirements that will be costly, time-consuming, and more importantly not immediately solve the problem. Another suggestion in the article was for each city to conduct a census of homes to find all the lead lines. Anyone who has worked in the water industry understands this would not be a foolproof method because the line at the main and into the home can be copper, but any of the length in between could be lead. The only way to know for sure if a line has any lead pipe is to dig it all up, and it is not feasible to do so just to get a census done.

Using a GIS to help analyze the problem

Instead it would be beneficial for cities to check their old records to see if they have anything showing service line installations. One city where I worked still had old permits for each installation indicating the size and material for each service line. If a city has cards like Flint, they can hire someone to input all that data into a GIS or into an EXCEL table with addresses and then upload it into a Google Fusion table and map it like I did for the test results below. Once the data is in a GIS, someone could overlay the information to see if the lead tests results match up with the lead line records. If age of residence is known, that could also be used and overlaid with the other data.

A quick, easy fix for communities with lead issues

While a GIS can help a water system get a better handle on lead in their system, it still doesn't actually solve the problem. Adding phosphates will address the lead in the water issue, and it is a fairly easy method to implement. But I understand Flint has already done this, so the lead levels in the water problem appears to be covered. But what about the lead paint and the community's need and desire to specifically focus on solving the problem for their lower income population? Since this population primarily lives in rental housing, the city of Flint, which already has a Rental Inspection Program, could easily add lead-free requirements to their rental program by amending their ordinance.

Basically, in order to rent a unit in Flint, the city could require the landlord to provide proof the service line to the unit was either installed originally with a non-lead pipe or that if originally lead, it had been replaced. Additionally, the landlord would need to prove the home did not test positive for lead paint. Only with this lead-free certification could a unit be approved as a rental. This places the burden of cost on the landlord who is a business owner and has an obligation to provide a safe living environment for people who are paying him or her money to live there. This requirement would also assist people who have lower incomes and who have little to no control to improve the building or facilities on which they rely. According to the U.S. Census 2014 Housing Selected Characteristics for Flint, Michigan, 45% of their housing stock are rentals. Enacting this amendment to their Rental Inspection Program would go a long way towards ensuring people in their community are living in lead free homes.


Is the Lead in Flint Really in the Drinking Water?

Flint Water Analysis 2/4/2016

I'm following up on the Flint water issue because the more I thought about it, I'm becoming much more convinced my original suspicion is true – the elevated lead levels in the kids there are not really related to the drinking water. As I mentioned in my last blog post about this, the leading cause of lead poisoning in children is lead paint, not drinking water. So if the pediatrician who analyzed the lead testing didn't take into account the living environments of those children, how does Flint know the lead in those kids is really from the drinking water and not lead paint? The government could end up spending hundreds of millions of dollars on replacing pipes and addressing lead in the drinking water, but the actual cause of the lead poisoning would not have been removed.

Perhaps someone closer to this problem has already looked into this because I cannot imagine this entire issue has been allowed to get to this point without someone bringing up this question. But I cannot find anywhere a discussion of how everyone came to the conclusion that the lead problem in Flint is due to the drinking water rather than lead paint which is a much more likely cause.  Even a recent article by PBS ("Worried about lead in your water? Flint pediatricians have this advice") cautions people about the dangers of lead paint, but just accepts that the problem in Flint is primarily due to the drinking water. 

It doesn't seem like the doctor who did the analysis is an expert in the built environment or in water chemistry so is it possible she just did not consider other causes or know what else to check? And now everyone is so focused on the drinking water that the actual cause of their problem is being missed? Recent test results of lead in drinking water in Flint seem to indicate this is a possibility. Out of a total of 7,131 tests to date, 6.5% of the sites tested had a lead level over the action limit of 15 ppb. And while this might be a concern if you were living in one of those homes over the limit, it is not quite the citywide risk it is being reported to be. According to the EPA's Lead and Copper Rule, the water supply is only required to address lead and copper in the drinking water if more than 10% of the sites tested are over 15 ppb.

Flint Water Analysis 2/4/2016

If the final result of all this testing proves lead in the drinking water in Flint isn't even above the action levels set by the EPA, this will serve as a good example of how data in the wrong hands can be misinterpreted and result in public panic and a waste of tax payer dollars without even solving the actual problem.

And will another result be that all the other cities with drinking water systems with lead level results above Flint's will begin to weigh whether or not it is worth letting the media know so they can also get more funding and free bottled water from celebrities. There's a similar size community I'm aware of that might not have lead levels over the action limit either, but according to a comparison shown below of the 2014 Consumer Confidence Reports from both communities, this water system does have a little more than twice the amount of lead Flint has. Based on the public's reaction to Flint, I'm thinking if this system drew attention to this fact, they could finally receive the millions they probably could use to upgrade their water system too. 

Lead Comparison 2014

In the end, I suppose we can say on the plus side this situation in Flint has resulted in bottled water companies having sold 234,490 cases of water for Flint since Jan. 9, 2016 (Source: State of Michigan), people being more aware of drinking water issues, and Flint receiving huge amount of funding for their water system. But I have to still wonder if the down side will be not having truly served the children of Flint?


If you are curious about where testing in Flint has taken place and want a visualization of the lead limits that are under (green) or exceed (red) the action limit of 15 ppb, you can check out a map I threw together from the current test results (there are a few outliers in the data, I apologize for not cleaning up):



We are all Flint Michigan

Lead Pipe at Roman Bath in Bath, England

There are so many articles out there by now about the Flint, Michigan, water issue, I debated adding mine to the list. But I noticed there are some interesting aspects about what has happened that I've not seen discussed elsewhere. So I decided to go ahead and throw my voice in with the others. Also, I think it is important that someone from the industry point out what all of us know, but the public and media may not which is that in general,

…We are all Flint, Michigan.

I'm going to discuss this point first just because the other topics I want to touch on involve more technical information that probably won't interest most people. So why do I say we are all Flint, Michigan? First a short history of lead in the water industry:

In many countries throughout the world, including the United States, lead pipes were used for centuries to convey water.

As you can see below, lead lines were used at the Roman Baths which were built in 70 A.D. in Bath, England.

Lead Pipe at Roman Bath in Bath, England

So how did lead move from a commonly accepted material for water lines to the "do not use" list? Based on information in an article "The Lead Industry and Lead Water Pipes 'A Modest Campaign'" by Richard Rabin, MSPH, people started realizing in the late 1800s that maybe using lead for moving water around wasn't such a great idea. But even this knowledge didn't seem to immediately stop the use of lead for many more decades. According to the article:

"Although most cities in the United States were moving away from lead water pipes by the 1920s, it appears that this trend was not universal. National model plumbing codes approved lead into the 1970s and 1980s, and most water systems based their regulations on those codes. Federal guidelines and specifications also sanctioned lead pipes at least into the 1950s." 

Lead use in water systems was not banned until passage of the Safe Drinking Water Act which in Section 1417 prohibited the:

 “use of any pipe, any pipe or plumbing fitting or fixture, any solder, or any flux, after June 1986, in the installation or repair of (i) any public water system; or (ii) any plumbing in a residential or non-residential facility providing water for human consumption, that is not lead free.”

Later, in 1991, the United States Environmental Protection Agency (EPA) published the Lead and Copper Rule – a regulation to control lead and copper in drinking water. This rule established the action level (AL) of 0.015 mg/L for Pb and 1.3 mg/L for Cu based on 90th percentile level of tap water samples. It's interesting to note that this rule also states an exceedance of the AL is not a violation but "can trigger other requirements that include water quality parameter (WQP) monitoring, corrosion control treatment (CCT), source water monitoring/treatment, public education, and lead service line replacement (LSLR)."

If you are wondering why it took so long to get lead banned as a material in the water system, you can read Rabin's article linked above. My point I'm making here is that lead was commonly used all over the place. Over the 30 plus years I've been designing, building, and helping operate water systems, I've come across a lot of lead lines used for water services – the pipes carrying water from the public water main to people's homes and businesses. And because lead was such a common material, I never noticed lead only used for lines running to homes in low income areas. I've also seen lead lines running to the homes of the wealthiest in the community and to all types of businesses.

What really makes the difference on what type of service line someone has is when it was installed.

If it was put in decades ago before copper became the preferred choice, then the line is probably lead. In Werner Troesken's book, The Great Lead Water Pipe Disaster, he lists on page 11 in Table 1.1 50 of the major cities in the U.S. and the material used for service lines in the late 1900s for 46 of these cities. He notes 85% of the cities were using lead water pipes. Detroit, Michigan, is one of them, and the locations extend across our nation from Washington, D.C., to San Francisco, Calif. For all I know the White House might still have a lead water line.  

Polyphosphate SystemSo if lead water lines are everywhere, just like in Flint, you might ask, how come we haven't dug up all these lines and replaced them? Well, replacing every lead line was definitely an option every community water supply regulated by the Lead and Copper rule could consider. However, I haven't heard of many that chose that alternative. Probably because the cost and disruption to the community is potentially tremendous and not cost effective compared to other solutions. Also, in many communities, ordinances place ownership of these water service lines with the property owner, so few communities wanted to have to go to their water customers and force them to put in new water lines. And even if the water supplier chose to pay for everything, the cost would ultimately be passed along anyway to customers through higher rates, and the property owner would still need to go through the disruption of having their yard torn up. So many community water supplies chose an alternative which involves adding chemicals like polyphosphates to the water to coat the pipes and prevent the leaching of lead and copper into the water. For most, it's really the most cost effective solution, and as you can see from the photo here, it's a fairly simple setup.

So if we are like Flint, are we too at risk?

While I said all that to try to let people know Flint is not different than most other cities across our nation with respect to its water piping, it is important to remember, not everyone, including everyone in Flint, is at risk. Based on the lead and copper water testing results I saw from Flint, it seems the results showed a little over 10% of the sites tested over the Action Limit which was similar to results from the supply systems for which I worked. So for those in Flint, this would mean if they do not have a lead service line, they are probably at a low risk of having lead levels above the action level. And for those of you who do not live in Flint and have a lead water line, if your community water supply is in compliance with the Lead and Copper rule, levels of lead in your water would probably not exceed the action levels noted above. However, to be sure, you could always contact your water supplier and ask them to test your water for lead and copper.

Also, be cautious of blaming drinking water for lead in children when it is more likely to be lead paint

 Prevent Lead Poisoning. Get your home tested. Get your child tested. Get the facts! Click here…If your community is going to analyze the lead levels in children and compare them over a specific time frame to determine if there is a lead problem, keep in mind the primary source of lead in children is not from drinking water, but from lead paint. So a true study would develop methodology that includes an analysis of each child's home environment over that time period. I tried to find the study or report from the pediatrician in Flint who analyzed the levels of lead in children in the area, but could not find any document summarizing her methodology, analysis, and testing to see if she had taken into account exposure to lead paint. Particularly if she has made a correlation between elevated levels and income levels of children who test positive for lead, I thought it would seem more likely lead paint would be the cause of that than would water. Not having found anything verifying she used the proper methodology, I have to wonder if there is a lead problem in Flint that will not be solved by addressing the drinking water because it is actually a lead paint problem. As the leadfreekids.org site states, "just a few particles of dust from lead-based paint are enough to poison a child."

And now for the technical discussion…

People familiar with the Flint story probably won't be surprised to hear that one of the main  problems we had with a plant where I used to work was that the engineer who designed it based the treatment design on the parameters of the existing water supply. For almost a hundred years, the community had drawn water from a shallow acquifer lying under about seven acres of land. As part of the water plant construction, the city had decided to expand their supply by digging a new well. This well was located outside of the immediate area of the historic well field, but because it was in the same acquifer, the engineer assumed the water quality would be the same. First lesson I learned from this project:

Always test the water quality parameters of a new water supply – preferably before committing to its use

The other wells had about 0.5 parts of manganese while this new well had 3 parts iron. Now if you are in the industry, you can imagine how the plant performed if it was designed to treat 0.5 parts of manganese and now had to also oxidize 3 parts iron. Iron oxidizes first so when that new well was running, there wasn't enough ozone, which we were using as the oxidant, to oxidize everything. Guess what we had to do? We pre-chlorinated to assist in the oxidation. And guess what the extra chlorine added ahead of the ozonators did? Increased the corrosiveness of the water.

So it seems like Flint built their new plant because they had been receiving treated water from Detroit then decided to enter into an agreement with other communities to pull water from the lake. And what I am wondering is did the plant designer set up the treatment system for the lake water without knowing or ignoring the river water would be used in the interim? If that was the case and the water quality is different between the two sources, this could be causing many of the issues they are having with corrosion. If changes had to be made to the process to address the change in the quality of the water supply, there could be impacts to the finished water quality that were not anticipated in the design.

Another issue with a change in water supply is that it can change the anticipated pH for which the plant was designed. And pH definitely has an impact on the performance of the treatment process. If pH is too low, the water can be more corrosive; if pH is too high, certain substances like calcium carbonate can fall out of solution, bind to the pipes, and reduce flow. Below is the inside of a pipe in which substances came out of solution and adhered to the pipe.

Pipe coated with calcium carbonate

I also looked at the treatment reports for Flint's water plant to see if there seemed to be anything unusual with their process that could affect the corrosiveness of the water. This is important to look into because replacing water lines may lower the risk of lead in drinking water supplying homes and businesses, but it will not improve the water quality. One thing I noticed is that according to Flint's Consumer Confidence Reports for 2014, they are using ozone for taste and odor control and as a pretreatment disinfection. Because of my past experience I wondered if their use of ozone was impacting the corrosiveness of their water. 

In our system, which used ozone as an oxidant (a photo of one of our ozonators is shown below) and required the need to pre-chlorinate, we initially experienced the formation of nitrates/nitrites. The level never exceeded the regulated amount, but it still caused problems in the system. Unfortunately we had to treat the problem with more chlorine until the nitrates/nitrite formation was under control. Fortunately for Flint, it doesn't appear this is an issue, but it is something to be on the lookout for.


We also noticed that in addition to the corrosive water causing a change in the level of lead and copper from the levels tested prior to the plant going online, there were many failures of metal-based parts in equipment exposed to water. In particular, the impellers of our pumps and the pumps in the fire trucks were degraded to the point they had to be replaced. I am not sure if Flint has experience any of this, but it is also something to monitor. Fortunately the addition of the phosphates and the addition of chemicals to increase our pH slightly seemed to elminate this problem for us.

Another issue that came up was raised by industries in our city that relied upon our water for their operation. A change in water quality can make a significant difference for these companies not only in the successful operation of their own process, but in their costs. I suspect this became an issue in Flint because I read a report indicating one of the industries had to be supplied with different water. Changing lead lines will not address this issue. Instead the treatment system needs to be analyzed and the water quality addressed. 

In the end, what all of the problems at our plant taught me was that the design and operation of a water treatment process is highly dependent on a strong knowledge of water chemistry. And over the years when I've talked with operators starting up new plants, I've found they are all struggling to solve the same issues again and again. And it all seems to be caused by the designer ignoring water chemistry. Engineers are typically the people designing water plants, but most engineers are not chemists. Which has always made me wonder

Why doesn't the EPA require a water chemist to sign off on new plant designs?

Information about the source water used in the design, the use of ozone, the pH and perhaps even temperature of the water, and the apparent use of high amounts of chlorine could indicate something might not be right with the treatment process chosen or implemented in Flint. And while I cannot say without a doubt that these are the issues impacting the corrosiveness of Flint's water, they are clues that tell me someone who knows water chemistry should be analyzing their treatment process. Because the government can throw hundreds of millions of dollars at this and everyone's pipes can be replaced, but in the end, the root of the problem might not be addressed which could be the use of the wrong treatment process for that particular water supply.